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5 Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 21 June 1984 

Abstract. We study the dimensional crossover in directed percolation in three dimensions. 
Bonds are allowed to have different concentrations along the three Cartesian axes of the 
lattice. Through a position space renormalisation group we obtain the phase diagram 
where nonpercolating, ID,  ZD and 3~ percolating phases are present. We find that, contrary 
to what happens in undirected percolation, the isotropic fixed points are unstable with 
respect to concentration anisotropy. Numerical estimates are given for the values of critical 
probabilities and exponents, which are in fairly good agreement with other results, where 
available. 

The isotropic flow of a fluid through a porous medium is a percolation process (for a 
review see e.g. Essam 1980). The introduction of a global external bias, such as the 
gravitational field, changes a number of essential features of the problem, the resulting 
process being called directed percolation (for a review see Kinzel(l983) and references 
therein). Directed percolation has been shown to be related to Reggeon field theory 
(Cardy and Sugar 1980), which in turn is connected to Markov processes in chemistry 
and biology (Grassberger and de la Torre 1979). 

Within the context of the modem theory of critical phenomena, the interest of 
directed percolation problems stems mainly from the fact that they exhibit critical 
properties quite distinct from those of ordinary percolation. Indeed, critical exponents 
are different in either case (Blease 1977a, b, c), and the upper critical dimensionality is 
five (Obukhov 1980), whereas it is six for ordinary percolation. Other features of 
directed percolation find no parallel in ordinary percolation. Due to the directional 
bias, the percolation cluster is extremely anisotropic in shape, and can be thought of 
as a cone whose axis is parallel to the 'easy' direction. On can then define a correlation 
length &b along a direction at an angle 4 from the 'easy' direction, which diverges as 

where pc( 4) is the critical bond (or site) concentration threshold for percolation along 
that direction. In two dimensions, Domany and Kinzel (1981) have shown that q ( 4 )  
can only have two values, corresponding respectively to 4 = 0 and 4 # 0. One can 
also define a pseudo-correlation length el,+ (Klein and Kinzel 1981), which measures 
the spread of the percolating cone perpendicular to the direction of observation 4, 
and whose divergence is related to an exponent vI (4) ,  similarly to ( 1 )  above. 
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The purpose of the present work is to investigate the dimensional crossovers in 
directed bond percolation on a simple cubic lattice, by allowing the bond concentrations 
along the three Cartesian axes to vary independently. Concentration anisotropy is 
irrelevant, in a renormalisation-group sense, in undirected percolation (see e.g. Oliveira 
(1982) and references therein); however, it has been shown to be relevant in two- 
dimensional directed percolation (Domany and Kinzel 1981, Oliveira 1983) Thus, it 
is interesting to extend the discussion of concentration anisotropy effects to a three- 
dimensional directed percolation problem, in order to check how it differs from its 
undirected counterpart. By means of a position-space renormalisation group (Young 
and Stinchcombe 1975) with cells suitably chosen to deal with concentration anisotropy 
in the context of a directed-lattice problem (Oliveira 1983) we obtain the phase diagram 
where one-, two- and three-dimensional percolating phases occur. Apart from extract- 
ing quantitative information about the different dimensional crossovers, we can analyse 
the behaviour along different directions of observation. Indeed, Domany and Kinzel 
(1981) proposed that the effect of varying the angle of observation 4 could be obtained 
by keeping the direction of observation fixed and allowing anisotropic bond concentra- 
tions in such a way that, on a square lattice 4 = tan-’ ( y / x  - 57/4), where x and y are 
the bond concentrations along the horizontal and vertical directions, respectively. In 
what follows, we first discuss the renormalisation group transformation; the results 
for fixed points, critical exponents and the phase diagram are then presented and 
discussed : finally we summarise our findings and present our conclusions. 

Consider a simple cubic lattice, and let x, y and z denote the concentration of 
directed bonds along each of the Cartesian directions. In order to describe anisotropy 
properties within a position space renormalisation group framework, the transformation 
of x, y and z under a length scaling (by a factor b )  must have the form 

x’= R b ( X ,  y,  z ) ,  y’= Rb(y, z, x),  z ’ =  R b ( Z ,  x, y )  (2) 

so that no other asymmetry is introduced in the problem. 
In this work we extend to three dimensions the prescription introduced by Oliveira 

(1983) which preserves the symmetry properties (2). In figure l ( a )  we show a cell in 
the original lattice, which is renormalised into the bonds of figure l (b) ;  the scaling 
factor is b = 2. The probability x’ of having an x-bond in the renormalised cell is 
obtained by counting all possible configurations that start at the origin 0 and get across 
the original cell along the x direction; similarly for y‘ and z’. 

The process of counting cell configurations can be greatly simplified with the use 
of the ‘break-collapse’ method (Tsallis and Levy 1981), properly modified to keep 
track of the direction of the collapsed bond (Tsallis and Redner 1983). 

Y Y 

* 
b = 2  
z,b ‘ 

X‘  

Figure 1. Cells used in the renormalisation group. The cell in (a )  is renormalised into ( b )  
by counting configurations that start at 0 and leave the cell along the different directions. 
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Before we present our results we should comment on two aspects of the cell-RG 
approach to directed lattice problems. First, the correlation length exponents obtained 
from this approach are estimates for vll (de Queiroz (1983) and references therein). 
Second, we use cubic cells of linear size b (in the present case we set b = 2 ) ,  which 
implies that vll is always measured along the [l 1 11 direction. The angular position of 
the ‘easy’ direction with respect to the [ 11 11 direction, in turn, is determined by the 
relative concentrations (Domany and Kinzel 1981, Oliveira 1983): in spherical coordin- 
ates we have r$ =tan-’ y / x  - 7r/4 and 8 =tan-’ [(x’ + Y ’ ) ” ~ / z  -;TI. Solving recursion 
relation ( 2 )  for non-trivial fixed points 

x* = R*(x*, y * ,  z*), Y *  = R2(Y*, z*, x*), z* = R2(z*, x * ,  y * )  (3 1 

we obtain the results displayed in table 1. As usual (Wilson and Kogut 1974), critical 
exponents follow from the relevant eigenvalues ( A i  > 1) of the linearised recursion 
relations around the fixed points through vi =In b/ln A i ;  the correlation-length 
exponent at each fixed point is given by the eigenvalue associated to the eigenvector 
that points away from the critical surface and is denoted by vI  in table 1. Wherever 
there is more than one relevant eigenvalue, we display the corresponding exponent vi 
( i >  1 )  and the crossover exponent r$ = vl/vi .  Physically, the eqonents  vi ( i >  1) 
describe the divergence of the correlation length as the critical point is approached 
tangentially to the critical surface. 

Iterating recursion relations ( 2 )  we obtain the phase boundaries as the RG trajectories 
linking pairs of non-trivial fixed points. Before presenting the full phase diagram, it 
is instructive to discuss some special cases. 

Setting z = 0 we recover the two-dimensional results of Oliveira (1983), reproduced 
in figure 2( a ) :  a boundary BAB separates percolating and non-percolating phases. 
Unlike ordinary percolation, concentration anisotropy drives the system to a new 
critical behaviour, which is that of fixed point B. This is consistent with the idea that 
anisotropy is equivalent to rotating the percolating cone, for a fixed direction of 
observation, thus giving rise to a new exponent vi,. Further, the fact that at A the 
boundary is curved towards the full-lattice point (1, 1) is a reminder that the location 
of bonds with respect to the origin (as well as their amount) is crucial to the formation 
of a percolating cone (Domany and Kinzel 1981); recall that for anisotropic undirected 
percolation the critical boundary is the straight line x S y  = 1 (Sykes and Essam 1963). 

Setting, e.g., x =  1, we obtain the flow diagram of figure 2(b) .  This region corre- 
sponds to having all x-bonds present, so 0 is a one-dimensional fixed point, to which 
the flow lines below the curve BCB converge. If we increase the concentrations of y -  
and z-bonds always keeping y = z, we end up with a three-dimensional percolating 
phase as point B is crossed. On the other hand, if y # z the system orders into a 
two-dimensional percolating phase before it reaches the three-dimensional phase as y 
and z are increased. At C the eigendirections are t and U, defined by the lines 
z + y = 0.560 and z - y = 0, respectively; the crossover exponent r$ (defined as t - U’) 
being smaller than one means that, close enough to C, any small additional amount 
of y and z bonds in such a way that z+y>0.560 will drive the system into a 
three-dimensional percolating phase. In the same way, if z + y  < 0.560, the system will 
percolate in only one dimension. Also, the fact that point D in figure 2( b )  is located 
at z Z 0  is an evidence that not only the amount, but also the location of z-bonds is 
crucial to the formation of a 3~ percolating phase along the 11111 direction. In analogy 
with the two-dimensional case of Domany and Kinzel (198 l ) ,  the critical probability 
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Figure 2. ( a ) ,  r=O section of the full flow diagram; the critical curve separates two- 
dimensional percolating and non-percolating phases. ( b ) ,  x = 1 section of the full flow 
diagram ; the critical curves separate the diff erent percolating phases and the non-percolating 
phase. ( c ) ,  Projection on yr  plane of the x = y section of the full phase diagram; the 
critical curves separate non-percolating, two- and three-dimensional percolating phases. 
Similar diagrams occur with cyclic permutations of x, y and z. 

z, varies from zero (along directions close enough to the xy plane in the first octant) 
to one (along the [OOl] direction); we have not tried to work out an exact expression 
for z,( 8, 4) which would be the three-dimensional version of p,( a) of Domany and 
Kinzel (1981). 

In figure 2(c) we show the flow diagram corresponding to two-dimensional con- 
centrational isotropy. Below the curve CEA lies a non-percolating phase, a two- 
dimensional percolating phase exists within the region EAFD, and the three- 
dimensional phase is above CED. Note that as the concentrations increase with 
z > x = y ,  the transition is from a non-percolating to a three-dimensional percolating 
phase. This means that, although the system does not percolate in each xy plane, the 
lack of bonds in these planes is compensated by the z-bonds; that is, the percolating 
path jumps to the next layer. On the other hand, if z < x = y ,  there is an intermediate 
two-dimensional phase, as the concentrations increase. 

At the isotropic fixed point (E in figure 2(c)), all three eigenvalues are relevant, 
two of them degenerate. In three-dimensional probability space, the eigenvector 
associated to the largest eigenvalue points along the [ 11 11 direction; the eigenvectors 
associated to the degenerate (smaller) eigenvalues span the plane perpendicular to the 
[ 1 111 direction passing through E. Once again, the fact that E is a completely unstable 
fixed point shows that the slightest degree of concentration anisotropy will drive the 
system towards anisotropic behaviour. As can be seen from figure 3 (where equivalent 
points are denoted by the same letters), points B, D and F are stable, respectively 
within each of the critical surfaces that meet tangentially along the four EC lines (B 
and D) and in the region between those surfaces (F). As A and C have two-dimensional 
isotropy, they are stable only along EA and EC, respectively. 

Figure 3 shows an overall view of the phase diagram; note that one-dimensional 
percolating phases exist only when either x or y or z is 1. 

In summary, we have obtained the phase diagram for the anisotropic three- 
dimensional directed percolation problem on a simple cubic lattice, by means of a 
position-space renormalisation group. Our results for critical probabilities and 
exponents are in fairly good numerical agreement with other estimates, where these 
are available (see table 1). We have found regions of non-percolating and one-, two- 
and three-dimensional percolating phases, although the one-dimensional phases only 
occur for either x or y or z = 1. The crossovers between the different phases have been 
studied, with the general conclusion that isotropic fixed points are unstable with respect 
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Figure 3. The full phase diagram (schematic). Equivalent fixed points are denoted by the 
same letters. Also shown are typical flow lines leaving the three-dimensional isotropic 
fixed point E. 

to concentration anisotropy, contrary to what happens in ordinary (undirected) percola- 
tion. Thus, if one observes isotropic directed percolation along a direction other than 
[ l  1 11, the critical behaviour will be described by a different set of exponents. 

As a final remark, we wish to point out that the cells we used do not properly 
describe anisotropy effects in undirected percolation; conversely, the cells that properly 
describe these effects in undirected percolation (Oliveira 1982) do not reproduce the 
behaviour we found. This question certainly deserves careful discussion before we try 
to investigate the anisotropic diode-resistor crossover. Note that this problem does 
not arise in the discussion of the crossover between concentrationally isotropic diodes 
and resistors (Redner and Brown 1981) because there one is confined to a subspace 
of parameter space, within which results yielded by cells similar to ours are reliable 
(Oliveira 1982). 

The authors would like to thank P M Oliveira for useful discussions and R B Stinch- 
combe for a critical reading of the manuscript. 
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